58 research outputs found

    Towards building a semantic formalization of (small) historical centres

    Get PDF
    Historical small urban centres are of increasing interest to different interacting fields such as architectural heritage protection and conservation, urban planning, disaster response, sustainable development and tourism. They are defined at different levels (international, national, regional), by various organizations and standards, incorporate numerous aspects (natural and built environment, infrastructures and open spaces, social, economic, and cultural processes, tangible and intangible heritage) and face various challenges (urbanization, globalization, mass tourism, climate change, etc.). However, their current specification within large-scale geospatial databases is similar to those of urban areas in a broad sense resulting in the loss of many aspects forming this multifaceted concept. The present study considers the available ontologies and data models, coming from various domains and having different granularities and levels of detail, to represent historical small urban centres information. The aim is to define the needs for extension and integration of them in order to develop a multidisciplinary, integrated semantic representation. Relevant conventions and other legislation documents, ontologies and standards for cultural heritage (CIDOC-CRM, CRMgeo, Getty Vocabularies), 3D city models (CityGML), building information models (IFC) and regional landscape plans are analysed to identify concepts, relations, and semantic features that could form a holistic semantic model of historical small urban centres

    MINOR HISTORICAL CENTRES ONTOLOGY ENRICHMENT AND POPULATION: AN HAMLET CASE STUDY

    Get PDF
    The main topic of this work focuses on the semantic, historical and spatial documentation of Minor Historical Centres (MHC) with a focus on (semi-abandoned alpine) hamlets. The key point is the possibility to standardise spatial information in the domain of MHC and their related cultural, architectural, built and landscape heritage. This work analyses the notions of historical centre and ancient area, which took different meanings and evolved over the centuries. MHC are historical part of cities, villages and hamlets (urban, rural, minor or abandoned) with cultural, social and economic values. Thus, MHC need to be preserved, documented and safeguarded. The spatial and semantic documentation is a fundamental tool for increasing their knowledge. In these places, many actors and stakeholders are involved in different activities, and for this reason, they need to share common knowledge and use a unique language. In this regard, spatial ontology is of relevant interest and usability. Ontologies are conceptual structures that formalise specific knowledge and create a unique and standard thesaurus that ensures semantic interoperability. This paper is part of a PhD research targeted at developing an ontology containing helpful information to manage, share and collect data on MHC due to the lack of an interoperable structure to formalise such knowledge. The main aim is to populate and enrich the already developed ontological structure with data of a mountain semi-abandoned hamlet: Pomieri. The methodological workflow is validated, enriching and populating the ontology, adding classes and instances with information and unstructured data of a real data case study

    ENRICHMENT AND POPULATION OF A GEOSPATIAL ONTOLOGY FOR SEMANTIC INFORMATION EXTRACTION

    Get PDF
    The massive amount of user-generated content available today presents a new challenge for the geospatial domain and a great opportunity to delve into linguistic, semantic, and cognitive aspects of geographic information. Ontology-based information extraction is a new, prominent field in which a domain ontology guides the extraction process and the identification of pre-defined concepts, properties, and instances from natural language texts. The paper describes an approach for enriching and populating a geospatial ontology using both a top-down and a bottom-up approach in order to enable semantic information extraction. The top-down approach is applied in order to incorporate knowledge from existing ontologies. The bottom-up approach is applied in order to enrich and populate the geospatial ontology with semantic information (concepts, relations, and instances) extracted from domain-specific web content

    TOWARDS BUILDING A SEMANTIC FORMALIZATION OF (SMALL) HISTORICAL CENTRES

    Get PDF
    Historical small urban centres are of increasing interest to different interacting fields such as architectural heritage protection and conservation, urban planning, disaster response, sustainable development and tourism. They are defined at different levels (international, national, regional), by various organizations and standards, incorporate numerous aspects (natural and built environment, infrastructures and open spaces, social, economic, and cultural processes, tangible and intangible heritage) and face various challenges (urbanization, globalization, mass tourism, climate change, etc.). However, their current specification within large-scale geospatial databases is similar to those of urban areas in a broad sense resulting in the loss of many aspects forming this multifaceted concept. The present study considers the available ontologies and data models, coming from various domains and having different granularities and levels of detail, to represent historical small urban centres information. The aim is to define the needs for extension and integration of them in order to develop a multidisciplinary, integrated semantic representation. Relevant conventions and other legislation documents, ontologies and standards for cultural heritage (CIDOC-CRM, CRMgeo, Getty Vocabularies), 3D city models (CityGML), building information models (IFC) and regional landscape plans are analysed to identify concepts, relations, and semantic features that could form a holistic semantic model of historical small urban centres

    THE ISPRS-EUROSDR GEOBIM BENCHMARK 2019

    Get PDF
    Standardised data formats and data models are essential for data integration and interoperability, which in turn adds value to data by allowing its reuse in multiple contexts. For this reason, in recent years extensive efforts have been focused on standards development. When representing the built environment, 3D city models and Building Information Models are particularly relevant, and their integration is now required to underpin use cases that cover the full life-cycle of a built asset, including design and planning as well as operations and management, and to support legal applications such as cadastral systems. For those kinds of data, CityGML by the Open Geospatial Consortium and Industry Foundation Classes by buildingSMART are the most popular reference standards. However, many users report, often through informal channels, the difficulties of working with these formats. This paper summarizes the outcomes of the GeoBIM Benchmark 2019, a scientific initiative funded by ISPRS and EuroSDR to collect insights into the most relevant issues encountered in the management of CityGML and IFC within existing software. Alongside data management (import, visualisation, analysis, export) problems, issues of particular consequence in terms of integration relate to georeferencing IFC files and the conversions among the two kinds of formats and models. Thus, the benchmark was designed to explore these tasks in available software. Following analysis of the benchmark results, a key outcome is the impossibility to find clear patterns in the behaviour of tools, which consequently means there is no consistency in the implementation of standards. Although the results could seem disappointing, the criticality in managing these standards as they are was described and this awareness can be the starting point for further research or further standards development. Finally, this project was useful to gather a wide community around this topic, and the discussion about the GeoBIM-related issues was definitely pushed

    Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition

    Get PDF
    The essential role of gut microbiota in health and disease is well recognized, but the biochemical details that underlie the beneficial impact remain largely undefined. To maintain its stability, microbiota participates in an interactive host-microbiota metabolic signaling, impacting metabolic phenotypes of the host. Dysbiosis of microbiota results in alteration of certain microbial and host metabolites. Identifying these markers could enhance early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling that demonstrates a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized that gut microbiota influences the overall biochemistry of host metabolome and this effect is tissue-specific. Thirteen different tissues from germ-free (GF) and conventionally-raised (MPF) C57BL/6NTac mice were selected and their metabolic differences were analyzed. Our study demonstrated a large effect of microbiota on mammalian biochemistry at different tissues and resulted in statistically-significant modulation of metabolites from multiple metabolic pathways (p  ≤ 0.05). Hundreds of molecular features were detected exclusively in one mouse group, with the majority of these being unique to specific tissue. A vast metabolic response of host to metabolites generated by the microbiota was observed, suggesting gut microbiota has a direct impact on host metabolism.</p

    “Notame”: Workflow for non-targeted LC-MS metabolic profiling

    Get PDF
    Metabolomics analysis generates vast arrays of data, necessitating comprehensive workflows involving expertise in analytics, biochemistry and bioinformatics in order to provide coherent and high-quality data that enable discovery of robust and biologically significant metabolic findings. In this protocol article, we introduce notame, an analytical workflow for non-targeted metabolic profiling approaches, utilizing liquid chromatography-mass spectrometry analysis. We provide an overview of lab protocols and statistical methods that we commonly practice for the analysis of nutritional metabolomics data. The paper is divided into three main sections: the first and second sections introducing the background and the study designs available for metabolomics research and the third section describing in detail the steps of the main methods and protocols used to produce, preprocess and statistically analyze metabolomics data and, finally, to identify and interpret the compounds that have emerged as interesting. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Impact analysis of accidents on the traffic flow based on massive floating car data

    Get PDF
    The wide usage of GPS-equipped devices enables the mass recording of vehicle movement trajectories describing the movement behavior of the traffic participants. An important aspect of the road traffic is the impact of anomalies, like accidents, on traffic flow. Accidents are especially important as they contribute to the the aspects of safety and also influence travel time estimations. In this paper, the impact of accidents is determined based on a massive GPS trajectory and accident dataset. Due to the missing precise date of the accidents in the data set used, first, the date of the accident is estimated based on the speed profile at the accident time. Further, the temporal impact of the accident is estimated using the speed profile of the whole day. The approach is applied in an experiment on a one month subset of the datasets. The results show that more than 72% of the accident dates are identified and the impact on the temporal dimension is approximated. Moreover, it can be seen that accidents during the rush hours and on high frequency road types (e.g. motorways, trunks or primaries) have an increasing effect on the impact duration on the traffic flow
    corecore